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Abstract—The rapid pace of AI development has highlighted
significant challenges in its creation and deployment, primarily
due to the centralised control maintained by a few large corpora-
tions. Such an approach exacerbates biases within AI models due
to a lack of effective governance and oversight. Furthermore, it
diminishes public engagement and raises serious data protection
concerns. The resulting monopolistic control over data and model
outputs also poses a threat to innovation and equitable data
usage, as users unknowingly contribute to data sets that serve
the interests of these corporations.

FLock democratises AI development and alignment through
on-chain incentive mechanisms. By promoting open source de-
velopment and data ownership, FLock facilitates an open and
collaborative environment where participants can contribute
models, data, and computing resources with rewards determined
by on-chain consensus. This approach improves transparency
and collaboration at scale without introducing biases from cen-
tralised entities. Ultimately, FLock enables diverse communities
to develop purpose-built AI models, offering bespoke solutions
tailored to their specific needs, revolutionising the landscape of
AI development and deployment.

I. INTRODUCTION

Spanning all fields, collaboration has historically catalysed
innovation. This is manifest in the case of the scientific and
the digital. By pooling collective expertise, we have forged
disruptive solutions at speed. At present, this ideal faces barri-
ers when applied to AI development and deployment: notably,
diminished public engagement, pervasive concerns regarding
concentrated control, and data protection exerted by a handful
of corporations. Meanwhile, blockchain technology [1], [2] has
demonstrated its efficacy in multiple areas needing distributed
corporations, such as decentralised finance [3], voting and
governance. Research into and deployment of blockchain to
transform AI development is now underway.

FLock, predicated on community involvement and a staunch
commitment to data protection, is poised to spearhead the
democratisation of AI ecosystem by using blockchain.

A. The Problems with Centralised Control over AI Creation

In the present day, the primary obstacle to innovation in
the realm of AI is its centralised control. This centralised
structure mandates that all AI training, decision-making pro-
cesses, and data storage are controlled within a single entity
or location [4]. This results in the following pitfalls:
Single Point of Failure: Vulnerability to disruptions from

technical issues and cyberattacks.
Value Plurality: Lack of value plurality means biases of

single entities are reflected in AI. With centralised insti-
tutions exerting absolute control over models [5], [6], the
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Fig. 1: FLock System Logic. Upon a task creation, the model is
first trained and validated in AI Arena, a blockchain-based de-
centralised training platform, and then optionally further fine-
tuned in FL Alliance using participants’ local data. Finally,
the model is deployed by applications in the AI Marketplace,
where feedback will be used to further improve the model.

values of the output models are also centralised [7]. For
instance, the world reimagined by Google’s generative AI
tool, Gemini, is widely criticised [8].

Data Protection: Providers of closed-source Large Language
Models (LLMs) [9], such as OpenAI, have the capability
to monitor all user interactions with their models, thereby
raising significant data protection concerns. In addition,
under this centralised framework, every user who inter-
acts with a LLM becomes an unwitting contributor of
data to these vast corporations that maintain ownership
of the models. There is a pressing need to enhance the
fairness of contribution incentives and to more accurately
assess the value of user-contributed data.

Governance: Recent research [10], [11], [12] has highlighted
a concerning trend in which the lack of governance
has led to a pronounced exacerbation of biases and
inaccuracies within the models.

Scalability: As the volume of data and complexity of tasks
increase, limited processing power acts as a bottleneck.

Innovation: Progress is stifled in an environment where a
limited number of entities have the means to experiment.

B. FLock’s Solution

FLock [13], [14] is a blockchain-based platform for decen-
tralised AI. As shown in Figure 1 and 2, FLock eliminates
obstacles that prevent active participation in AI systems, em-

https://openai.com/


FLock: Federated Machine Learning on Blockchain (Version January 21, 2025)

Training
Node

Training
Node

Validator Validator Validator

eval
eval eval eval

eval

eval

AI Arena Task

train train

Blockchain

stake

Rank
#1 

#2

#3

...
consensus

consensus model

Model Host 

Model Host 

Model Host 

Model Host 

...

...

End Users 

Developers 

DApps 

Apps 

Inference APIs

fees

AI Marketplace

consensus model/FL global model

FL
Client

Local Data 

FL
Client

Local Data 

FL
Client

Local Data 

gradients

gradients

gradients

global model 

consensus model
FL global model

stake

reward

stake

reward

reward

AI Arena FL Alliance

Fig. 2: FLock System Overview. When a task is created in AI Arena, it is first trained by training nodes. These nodes then
submit their models to validators, who evaluate and propose scores for each submission. The validators reach a consensus on
these scores to determine the ranking of the submitted models. The consensus model can then be assigned to FL clients, who
fine-tune and improve it using their local data, resulting in the FL global model. The AI Arena consensus model or the FL
global model can be deployed and hosted in the AI Marketplace, providing interfaces to various applications. AI Arena train
nodes, validators and FL clients need to stake to participate the system, and will be rewarded based on their performance.

powering communities to contribute models, data, or comput-
ing resources in a modular and decentralised way. AI models
can be trained and validated in AI Arena and further refined
in Federated Learning (FL) Alliance. Harnessing blockchain
technology, FLock introduces incentive mechanisms for par-
ticipants, fostering a collaborative environment. This results
in the development of a wide range of purpose-built models,
created by, with, and for the communities, offering tailored
solutions to meet specific needs.

II. FLOCK SYSTEM OVERVIEW

The FLock system consists of the blockchain layer, AI layer,
and various participants. Each component plays an essential
role in ensuring the system’s functionality and security.

A. Blockchain Layer
FLock’s tokenomics incorporates a blockchain-based reward

mechanism designed to enhance resilience against malicious
user attacks. This robust security feature is underpinned by
a carefully designed incentive mechanism. The blockchain
layer acts as the foundation for both stakeholder participation
and the distribution of rewards. This layer employs smart
contracts to ensure that participants can securely lock in their
stakes, fostering an environment of trust and transparency. The
process is designed to incentivise participation by allocating
rewards based on contributions, thus encouraging a more
engaged and active community.

The blockchain layer’s inherent security features safeguard
against fraudulent activities, ensuring uncompromised integrity

of staking and reward distribution. It is an critical component
to support the model safety and improve resilience against ma-
licious user attacks. By leveraging smart contracts, the system
automates an efficient and fair rewards process. Automation
reduces human error and ensures that rewards are distributed
in a timely and fair manner.

B. AI Layer

The AI layer offers infrastructure for decentralised training,
extracting and monetising knowledge from data. It encourages
compute and data contributions from the community, using
blockchain for rewards based on thier contributions.

• AI Arena. AI layer supports a conventional machine
learning (ML) model training paradigm, optimising mod-
els directly on users’ devices with their own or public
data. To maximise the generalisation ability and perfor-
mance of the final trained models, this layer is designed
to encourage community members to contribute various
public or local data, harnessing the broader community’s
power. By leveraging blockchain, it ensures contributors
are continually engaged and rewarded based on the quan-
tifiable impact of their data on improving the models.

• FL Alliance. Utilising the FL [15] approach, the AI layer
enables thousands of participants to collaboratively train
a global model, where data sovereignty is preserved by
ensuring that no local data are transmitted at any stage of
the training process. Within the AI layer, a model aggre-
gation component allows participants to upload weights

2



FLock: Federated Machine Learning on Blockchain (Version January 21, 2025)

from models trained on their unique local data. These
weights are then aggregated to build an optimal global
model, enhancing its generalisation capabilities and per-
formance. The integration of training task automation
and deployment orchestration components simplifies the
process for users to join tasks and contribute valuable
knowledge extracted from their data.

In FLock, AI Arena tasks will engage participants from the
Web2 AI community, who possess the necessary computa-
tional resources to train and validate models using publicly
available datasets. These trained models can be further refined
through FL Alliance tasks, which draw in participants capable
of contributing their own local data.

C. AI Marketplace

Once models are trained and fine-tuned through AI Arena
and FL Alliance, they can be hosted on our platform. This
platform serves as a comprehensive environment for deploy-
ing ML models, making them accessible within blockchain
networks of virtual machines (VMs). By integrating with
these networks, the platform facilitates the seamless execution
and inference of complex ML models, providing real-time,
scalable, and secure solutions.

The infrastructure for model management includes version
control, model monitoring, and automated updates, ensuring
that the models remain accurate and efficient over time. It can
provide inference APIs or SDKs that developers can use to
integrate these models into their applications.

Model hosts are compensated based on the quality and
frequency of their contributions. They play a crucial role in
generating inferences and maintaining the infrastructure.

D. Participants

There are various categories of participants in FLock.
1) Task Creators: Task creators will define the training

tasks. Any participant who is willing to stake sufficient
assets into the system or has already contributed to the
system can potentially selected as a task creator. This
broadens the range of stakeholders, confering a sense of
ownership and active involvement.

2) Training Nodes: Training nodes compete in AI task
training and are required stake tokens to be eligible. This
requirement ensures a commitment to the network’s in-
tegrity and facilitates a distributed, trust-based mechanism
for task assignment. This stake acts both as a gatekeeper
to maintain a high standard and as a foundational element
in the network’s security protocol, ensuring that nodes
have a vested interest in proper execution and the overall
health of the ecosystem.

3) Validators: Validators are responsible for evaluating
work done by training nodes, submitting validation scores
that influence reward distribution. They participate by
staking tokens, which grants them the opportunity to
validate tasks assigned to them, ensuring hardware com-
patibility and fair task distribution proportional to their
stake. Upon completion of a task, they can withdraw

their stake and claim rewards, which are calculated based
on their performance and adherence to the expected
outcomes. The design ensures that validators are incen-
tivised to provide accurate and honest validations, thereby
maintaining the quality and reliability of the network’s
computational tasks.

4) Delegators: Delegators contribute to the FLock system
by supporting other participants’ staking process, enhanc-
ing the network’s validation capacity without directly
participating in the task training or validation process.
Delegators share in the rewards earned by their associated
delegatees, based on predefined algorithms that account
for their staked contribution. Note that training nodes and
validators who choose to accept delegation are free to
choose a reward share ratio. The higher the ratio, the
bigger the reward share their delegators will receive. The
role of delegators allows individuals to participate in the
network’s training, validation and economic activities,
leveraging their tokens to support delegatees, without
needing the technical capabilities to train or validate tasks
themselves.

5) FL Clients: With a FL framework, FL clients will
contribute their local data to enhance the model trained
for the AI Arena task. In each FL task, participants will
be randomly designated as either proposers or voters.
Proposers will be tasked with training the model within
a FL framework, while voters will assess the training
outcomes produced by the proposers. Both proposers
and voters will receive rewards or face penalties based
on their respective performances. FLock ensures that all
participants are motivated to contribute effectively to the
overall model improvement.

6) Model Hosts: The role of a model host in AI Market-
place involves deploying and managing trained models,
providing infrastructure for secure and scalable execution,
and enabling access through APIs and SDKs. The host
ensures the models are kept up-to-date, monitors their
performance, and facilitates integration into applications.
Additionally, they will be compensated for their con-
tributions to generating inferences and maintaining the
system’s integrity.

III. FLOCK TOKENOMICS

FLock aims to build a fair and incentive-compatible ecosys-
tem, designed to foster collaboration and ensure long-term
alignment within its community. This vision is realised through
a strategically designed reward allocation system, an effective
slashing mechanism for accountability, and the cultivation of
active token demand.

A. Token Supply

1) Emission: FLock’s ecosystem will feature $FLOCK to-
kens, set to be distributed to various stakeholders through
an initial token emission and a strategically designed reward
allocation system over time. Participants will receive rewards
in $FLOCK tokens based on their contributions to the system.
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Participants in the FLock system, such as training nodes and
validators, are required to contribute computing or storage
resources to complete model training and validation in order
to receive rewards. This means that the value of the $FLOCK
token will, at a minimum, correspond to the value of the
resources consumed during these processes.

2) Slash: FLock robust mechanisms ensure the integrity
and reliability of the system by penalising participants that
engage in malicious activities. In AI Arena, if a participant
is identified as acting against the system’s rules or attempting
to undermine the system through malicious actions, they are
subjected to “slashing”. Slashed tokens will be rewarded to the
honest participants. Slashing protects the system from immedi-
ate threats by disincentivising malicious actors and reinforces
a culture of trust and cooperation among participants.

B. Token Demand

Active token demand is encouraged through multifaceted
approachs as follows, showing the value of circulating tokens
within the ecosystem.

1) Utility: Participants are required to stake $FLOCK to
play a role. This reflects their vested interest in the integrity
and success of operations. For task creators facing urgent
needs to gather top-notch trainers for their model training or
operating under tight deadlines, they may opt to pay additional
$FLOCK as bounties. These bounties will then be distributed
as payments to participants involved in those specific tasks
to prioritize the training processes. Participants can be also
supported by delegators through $FLOCK token delegation.
By doing so, the system boosts the participants’ stake within
the FLock system and incentivises a symbiotic relationship.
Delegators, in turn, earn a share of the rewards earned by
their participants, fostering a competitive environment where
participants are motivated to offer attractive terms to potential
delegators.

2) Payment: Community members are able to access and
utilise winning models which are trained and fine-tuned in
AI Arena and FL Alliance, and hosted on AI Marketplace.
End users enjoy rate limit in their access to such models
based on their stake amount, beyond which they will be
charged in $FLOCK as payment. On the other hand, model
hosts need to stake $FLOCK in order to host winning models.
They are able to customise whether and how to charge end
users of these models. At inception phase, model hosts will
receive part of the daily emission in order to incentivise their
participation. Yet such incentives are expected to diminish over
time. Overall, such design creates a sustainable and compet-
itive environment in which demand and supply for cutting-
edge models are dynamically balanced, fostering innovation
and ensuring that the latest advancements continue to meet
the evolving needs of the market. The payment mechanism
also creates a non-negligible financial barrier in access to
our models, thus helps mitigate potential DoS attacks from
malicious participants.

3) Governance Participation: Holding $FLOCK tokens
grants members the power to influence the network’s fu-

ture through participation in the Decentralised Autonomous
Organisation (DAO) governance. This not only decentralises
decision-making but also adds a layer of utility and value to
the tokens, as they become a key to shaping the ecosystem’s
development.

IV. FLOCK INCENTIVE AND SECURITY

A. Incentive

FLock leverages well-designed incentive mechanisms to
reward participants. The distribution of newly emitted tokens is
carefully orchestrated across AI Arena tasks and FL Alliance
tasks, reflecting a strategic allocation that hinges on the staking
dynamics within each task category.

In our system, verified tasks are granted a share of daily
rewards, serving as an incentive to foster the growth of the task
creation ecosystem. This reward distribution is intentionally
restricted to tasks approved by the DAO to safeguard the
protocol from being exploited by low-quality or malicious
tasks that could otherwise drain emissions without contributing
meaningful value.

Each newly created AI Arena and FL Alliance task has
the option to undergo a verification process conducted by the
community-led DAO. This process is designed to ensure that
tasks meet the necessary standards of quality and alignment
with the ecosystem’s goals. Once a task successfully passes
verification, it becomes eligible for $FLOCK’s daily emissions,
providing the task creator with additional resources to incen-
tivise participation and collaboration.

On the other hand, if a task is created permissionlessly
without the FLock DAO’s verification, the responsibility falls
on the task creator to self-fund the task. This involves using
their own $FLOCK to cover the costs associated with reward
allocations for various participants. While this route allows for
greater flexibility and decentralisation in task creation, it also
places the financial burden of supporting the task’s ecosystem
on the creator. This mechanism is designed to balance innova-
tion with quality control, ensuring that only well-constructed
tasks benefit from community-supported rewards while still
allowing for creative freedom in the ecosystem.

In the long run, this dual approach aims to encourage
high-quality task creation, foster a vibrant and trustworthy
ecosystem, and maintain the integrity of the $FLOCK reward
system by aligning incentives with the community’s standards
and goals.

Once tasks are created, the distribution of rewards between
DAO-verified AI Arena and FL Alliance tasks is dependent
on the their relative stake amount of active tasks. As such, the
rewards of $FLOCK allocated to all active AI Arena tasks will
be:

RAI = C0 ·
SAI

SAI + SFL

and for all active FL Alliance tasks:

RFL = C0 ·
SFL

SAI + SFL
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Attacks Description FLock Mitigation

Sybil Attacks An attacker might gain disproportionate in-
fluence in the FLock system by creating and
controlling multiple fake identities of partici-
pants.

� Staking assets increases the difficulty of controlling many
training nodes or validators.
� Blind validation mechanism prevents collusion between
training nodes and validators.
� In each task, only the top k1 training nodes and the top k2
validators will rewarded, ensuring that participants with poor
performance do not receive rewards.

DoS Attacks An attacker might exhaust the FLock system
resource and make it unavailable to honest
participants.

� Rate limiting is implemented to restrict the frequency and
volume of actions within a certain time frame, ensuring that no
single participant can overwhelm the system.

Free-rider
Attacks

Free riders benefit from a system without
contributing fairly. In the FLock system, a
free rider training node may randomly sub-
mit models without actuall training. Similarly,
free rider validators give random scores in-
stead of honestly evaluating models.

� In each task, only the top k1 training nodes and the top k2
validators will rewarded, ensuring that participants with poor
performance do not receive compensation.
� FLock AI Arena consensus guarantees that honest partic-
ipants who contribute diligently are appropriately recognised
and rewarded, deterring free riders from exploiting the process.

Lookup Attacks Training nodes could cheat by learning to
predict past validation score calculations.

� Two datasets, i.e., Datasets A and B, are used as validation
sets to evaluate the models. Consequently, even if a training
node manages to optimise its performance for Dataset A, it
could still underperform on Dataset B. By carefully calibrating
the rewards between Dataset A and B, FLock effectively
motivates training nodes towards developing genuinely high-
quality models.

FL Model Poi-
soning Attacks

In FL Alliance, an attacker may use biased or
corrupted data during the training process to
degrade the model’s performance.

� By aggregating contributions, majority voting minimises the
impact of single malicious participants.
� The slashing mechanism penalises malicious clients, deter-
ring model poisoning by reducing their rewards and discourag-
ing future attacks.

TABLE I: Summary of how FLock system mitigation against potential attacks.

in which C0 is the daily emission of $FLOCK, SAI refers to
the total stake amount of all active AI Arena tasks and SFL

refers to the total stake amount of all active FL Alliance tasks.
Note that at the initial phase, to incentivise participation,

task creators will also receive a slice of the reward pool. This
reward, however, is expected to be phased out over time.

In AI Arena, this allocation is meticulously calculated based
on the aggregate staking contributions from task creators,
training nodes, validators, and delegators for each task.

1) Rewards among AI Arena Tasks: Within the span of a
single day, consider the situation where there are M AI Arena
tasks with the total staking amounts of (S1, . . . , SM ). The total
staking amount, Si, includes the stakes from all participants
involved in this task. This means that the stakes from any type
of user will influence the reward distribution among tasks. p
is a system parameter that can be adjusted via DAO decision.

Assume the amount of daily emitted $FLOCK token is CAI .
For an AI Arena task with the total staking amount of Si, its
daily total rewards is:

RAI
i = CAI ·

Sp
i∑M

k=1 S
p
k

For each AI Arena task, rewards are allocated among task

creators, training nodes, validators, and delegators. In the
initial version of FLock, if a validator has delegators, d1%
of their rewards are designated for these delegators. It is
important to note that this distribution parameter is flexible and
subject to adjustments through the FLock DAO governance.

2) Rewards among FL Alliance Tasks: A FL Alliance task
should be is derived from a finished AI Arena task to be further
fine-tuned. The initiation of an FL task automatically triggers
the creation of a new FL contract. For each active FL Alliance
task within the ecosystem, daily rewards are transferred to
the respective FL smart contract, provided the task is still in
progress and has not surpassed its maximum allotted lifecycle.
This preliminary step ensures that the rewards are earmarked
and protected for participants actively engaged in the task.
Subsequently, upon meeting the predefined conditions, the FL
smart contract autonomously distributes the rewards to the
participants, according to their contributions.

B. Security

As shown in Table I, the FLock system’s security is de-
signed to be resilient against attacks.

Sybil attacks are mitigated by a requirement to stake
a minimum amount of assets, making it costly to control
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Fig. 3: Overview of the workflow of a FLock AI Arena task. Validators earn rewards based on their consensus scores. Two
types of rewards are used to incentivise trainig nodes in order to mitigate their lookup/overfitting attacks.

multiple identities. Validators are kept unaware of the model
origins, reducing the risk of collusion. Only the top-performing
training nodes and validators receive rewards, discouraging
poor performance and manipulation. To mitigate DoS attacks,
the system implements rate limiting, preventing any single
participant from monopolising resources. Free-rider attacks are
addressed by rewarding only the top contributors, ensuring that
participants who do not genuinely contribute cannot benefit.
The use of dual datasets (Dataset A and B) in evaluations
prevents lookup attacks, as optimising for one dataset does
not guarantee success in the other. For FL model poisoning
attacks, a majority voting system and slashing mechanism
protect the model’s integrity, punishing malicious actors and
discouraging future attempts. These measures collectively for-
tify FLock against a range of threats, promoting a secure and
reliable decentralised training environment for participants.

V. FLOCK CONSENSUS IN AI ARENA

Figure 3 shows the overview of the workflow of a FLock
AI Arena task.

A. Task Creators

Task creation is the primary stage of the training cycle.
Creators define the desired models and submit tasks to the
platform. Anyone who satisfies the criteria is eligible to be
a task creator, making the system inherently democratic and
accessible to a wide range of stakeholders. This inclusivity
fosters a sense of ownership and active involvement within
the FLock community.

To qualify as a task creator, users must meet one or more
of the following criteria:

• Stake a sufficient amount of $FLOCK.
• Have successfully trained or validated a task previously,

as evidenced by on-chain records.
• Possess a reputation in the ML space or be recognised

as a domain expert in relevant fields, as verified by the
FLock community.

If the task creator and the created task are verified by
the FLock DAO, the task will be eligible for daily $FLOCK
emissions. However, if the task creator chooses not to undergo
verification by the community-led DAO, they must self-fund
the task using $FLOCK to cover the costs associated with
reward allocations for the participants.

In addition to gaining access to the desired training model,
task creators may also earn rewards for their contributions.
However, these rewards are expected to be gradually phased
out over time.

B. Training Node and Validator Selection
In this setup, each participant first stakes in the system to

be eligible to perform task training or validation.
In practice, rate limiting is adopted to determine the number

of times participants can access validation for a given task.
As illustrated in Figure 4, the likelihood of a participant
being selected to validate a task submission increases with
their stake. However, the rate at which validation frequency
increases relative to the staking amount tends to diminish as
the staking amount grows.

C. Training in AI Arena
We consider the dataset held by the training node, Dlocal,

which contains locally sourced data samples, comprising fea-
ture set X and label set Y , with each sample xi ∈ X
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Fig. 4: Example: rate limiting for validation frequency.

corresponding to a label yi ∈ Y . We define a predictive model
f , aiming to learn patterns within D such that f(xi) ≈ yi.

To quantify the prediction metric, accuracy as an example,
the task trainer will introduce a loss function L(f(xi), yi), as-
sessing the discrepancy between predictions f(xi) and actual
labels yi. A generic expression for this function is:

L =
1

N

N∑
i=1

l(f(xi), yi)

where N denotes the total sample count, and l signifies a
problem-specific loss function, e.g., mean squared error or
cross-entropy loss.

The optimisation goal is to adjust the model parameters θ
to minimise L, typically through algorithms such as gradient
descent:

θnew = θold − η∇θL

where η represents the learning rate, and ∇θL the gradient
of L with respect to θ. Utilising the aggregated dataset D,
parameter θ is iteratively updated to reduce L, consequently
improving the model’s predictive accuracy. This optimisation
process is conducted over a predefined number of epochs E,
each epoch consisting of a complete pass through the entire
dataset D.

D. Validation in AI Arena

Consider a selected group of validators, denoted as Vj ∈ V ,
each equipped with the evaluation dataset Deval from the
task creator. This dataset consists of pairs (xi, yi), where
xi represents the features of the i-th sample, and yi is the
corresponding true label.

The model, trained by designated training nodes, is denoted
as θtaskp . The primary objective of θtaskp is to predict the label
ŷi for each feature vector xi contained within Deval.

To assess the performance of θtaskp on Deval, we use an
general evaluation metric denoted by eval. Here, we exemplify
with accuracy, which is calculated as follows:

eval(θtaskp ,Deval) =
1

|Deval|
∑

(xi,yi)∈Deval

1(ŷi = yi)

Here, 1 represents the indicator function that returns 1 if the
predicted label ŷi matches the true label yi, and 0 otherwise.
The function |Deval| denotes the total number of samples within
the evaluation dataset.

Each predicted label ŷi from the model θtaskp is compared
against its corresponding true label yi within the dataset
Deval. The calculated metric result (accuracy here) serves as a
quantifiable measure of θtaskp ’s effectiveness at label prediction
across the evaluation dataset.

E. Reward for Training Nodes in AI Arena

Within a single AI Arena task, the reward distribution
between training nodes and validators is determined based on
their relative stake amounts.

We assume there are n submissions (O1, . . . , On) from
n training nodes, and m validators (V1, . . . , Vm), each with
stakes (s1, . . . , sm).The stakes represent the validators’ com-
mitment and trust in the process, influencing the weight of
their evaluations in the aggregated score.

Let the total daily reward allocated to a task be denoted as
R0 and the parameter γ controls the split rewards, defining
the balance between fixed and stake-dependent reward com-
ponents. Then, the total rewards for training nodes are:

R0 ·

(
γ + (1− 2γ) ·

∑n
i=1 ti∑n

i=1 ti +
∑m

j=1 sj

)
• Each validator Vj(1 ≤ j ≤ m) evaluates the n models

submitted by the training nodes, producing a score vector
r⃗j = (rj1, . . . , rjn). These scores reflect the perceived ac-
curacy, reliability, or performance of each model accord-
ing to predefined criteria. The outlier scores proposed by
malicious validators will be ignored by honest validators
before taking into amount in the following steps.

• The final score for each model from the training nodes
is determined through a weighted aggregation:

r⃗ =

(∑
j rj1 · sj∑

j sj
, . . . ,

∑
j rjn · sj∑

j sj

)
This means that the evaluations of validators with higher
stakes have a larger impact on the final outcome.

• We then compute the following geometry series:

gk =
1− q

1− qm
· qk−1

in which k denotes a given training node’s rank amongst
its peers in the same task, whereas q represents the
common ratio of the geometric series and m is the
number of training nodes in a given task.
Participants in the FLock system, such as training nodes
and validators, are required to contribute computing or
storage resources to complete model training and valida-
tion in order to receive rewards. This means that the value
of the $FLOCK token will, at a minimum, correspond
to the value of the resources consumed during these
processes.
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• We finally compute the total rewards allocated for the
training nodes as well as their delegators, which is based
on the quality of their submission and their total amount
of stake:

fi(gi, ti) =
gi · tαt

i∑n
k=1 gk · t

αt

k

where αt is a system parameter which determines the
influence of the stake on the reward distribution, and ti
the total stake amount of from the training node i as well
as its respective delegators.

• Consider σ as the reward ratio set by training node i itself
which determines the ratio of rewards shared between
training node i and its respective delegators. Consider
also that a training node i’ stake in the task is tn and
stakes delegated to training node i is td, i.e. ti = tn + td,
then the actual reward for training node i is:

fi ·
(
σ + (1− σ) · tn

tn + td

)

F. Reward for Validators in AI Arena

Similar to reward calculation for training nodes, the rewards
for all validators in the same given AI Arena task is:

R0 ·

(
γ + (1− 2γ) ·

∑m
j=1 sj∑n

i=1 ti +
∑m

j=1 sj

)
For each validator Vj , we compute the distances between

their score and the final aggregated score:

∆⃗j = (∆j1, ...,∆jn)

=

(∣∣∣∣∣
∑

j rj1 · sj∑
j sj

− rj1

∣∣∣∣∣ , ...,
∣∣∣∣∣
∑

j rjn · sj∑
j sj

− rjn

∣∣∣∣∣
)

We define a distribution function fi, which satisfies: fi(∆1i, s1) + . . .+ fi(∆mi, sm) = 1,
fi decreases over the distance ∆ji,
fi increases over the stake amount sj .

To fulfill the three criteria, we can employ a modified
version of the Softmax Function:

fi(∆ji, sj) =
e−λv∆ji · sαv

j∑m
k=1 e

−λv∆ki · sαv

k

The parameters λ and α play crucial roles:

• λv

– Purpose: Controls the sensitivity of the function to the
distance ∆ji. This distance measures the discrepancy
between a validator’s score and the aggregated score.

– Effect: A higher λv increases the function’s sensitiv-
ity to score accuracy, emphasising the importance of
precise evaluations.

– Selection Criteria: The choice of λv balances the need
to penalise inaccuracies against the goal of rewarding
nearly accurate evaluations.

• αv

– Purpose: Determines the influence of the stake amount
sj on the reward distribution, thereby adjusting the
weight given to validators’ financial contributions.

– Effect: Allows for balancing between the importance
of validators’ financial commitment and their perfor-
mance accuracy. A higher αv gives more weight to the
stake amount in the reward calculation.

– Selection Criteria: Reflects the system’s philosophy
regarding the stake’s importance relative to score ac-
curacy. An αv of 0 means stake amounts are ignored,
while a higher value increases their impact.

If the validator finishes multiple (i.e., N ) validation tasks,
then it reward ratio is:

N∑
i=1

fi(∆ji, sj)

If a validator’s stake in the task is sv , and sj is its
accumulative stake by considering the total delegation amount
Sd on this validator, i.e., sj = sv+Sd, the actual reward ratio
for this valdiator is:(∑

i

fi(∆ji, sj)

)
·
(
σ + (1− σ) · sv

sv + Sd

)
where σ is a system parameter which controls the rewards

split between a given validator and its delegators.

G. Delegate Staking

Delegators may entrust their tokens to participants of their
choosing to receive a passive investment income stream. The
receivers can thus amplify their stake, influence, voting power,
and rewards. These rewards are shared with the delegators,
furthering cooperation. This extends participation to users who
have tokens but lack the technical expertise to perform AI
model training or validation.

Specifically, reward for the delegator depends on:

• The quality of the training nodes or validators selected
for delegation.

• The amount of stake delegator has delegated.

Formally, reward for delegator who delegates to a training
node can be calculated as:

fi · (1− σ) · td
tn + td

whereas fi refers to the total reward distributed to the training
node i and delegator based on the quality of the training node’s
submission, td is the stake amount from this given delegator,
tn is the stake amount from training node i and σ is the reward
share ratio pre-determined by training node i .
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Total

Training Nodes Delegators Validators

Training Node A Training Node B Delegator A

(σ = 0.4)

Val. A Val. B Val. C

Reward A (10%) Reward B (90%) Reward A (10%) Reward B (90%)

Day 1 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703

Day 2 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703

Day 3 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703

Day 4 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703

Day 5 309,157.68 4,937.1 44,433.9 5,053.9 45,485.1 8,712.6 73,997 87,834 38,703

TABLE II: Example: Updated reward distribution for one task (Days 1–5) with 2 training nodes (A,B), Delegator A (σ = 0.4),
and 3 validators (A,B,C). δ = 0.1 for Reward A (10%) vs. Reward B (90%).

Similarly, reward for delegator who delegates to a validator
can be calculated as:(∑

i

fi(∆ji, sj)

)
· (1− σ) · sd

sv + sd

in which
∑

i fi(∆ji, sj) is the Softmax function for validator
mentioned above, whereas sd refers to the stake amount from
a given delegator and sv is the stake amount from the validator
itself.

In the future, FLock delegate staking has the option to be
integrated with existing restaking platforms to attract users
from a border blockchain community.

H. Various Validation Sets

To mitigate the lookup attacks from malicious training
nodes, FLock validators adopt diverse validation datasets.
Specifically, for a AI Arena task spanning x days, the vali-
dation dataset used during the initial x− 1 days differs from
that of the final day. These distinct validation datasets are
associated with two types of rewards: Reward A for the initial
period and Reward B for the final day. This strategic approach
enhances security by varying the data against which training
nodes are validated, thereby complicating any potential mali-
cious attempts to exploit predictable validation scenarios.

• For each AI Arena within the ecosystem, the rewards
mechanism for training nodes is thoughtfully designed to
comprise two distinct parts: Reward A and Reward B.
– Reward A provides a daily contingent reinforcement

schedule, incentivizing participant engagement with AI
Arena tasks through immediate gratification. This con-
tinuous reward mechanism fosters sustained participa-
tion by providing consistent feedback and reinforcing
contributions.

– Reward B, implements vesting, releasing tokens upon
successful task completion within a predetermined
lifespan. This incentivizes participants to both engage
in tasks and ensure their timely and efficient com-
pletion. Vesting also functions as a quality control
mechanism, promoting focused contributions aligned
with project deadlines.

– Reward A of the AI Arena task is:

RAI,A
i = δ ·RAI

i

– Reward B of the AI Arena task is:

RAI,B
i = (1− δ) ·RAI

i

δ is a configurable system parameter.

I. Example

We consider the rewards for the participants in task 1.
We assume that:

• Daily total rewards for all AI Arena tasks for a given day
is 309,157.68.

• There are 2 nodes and 3 validators in this given task.
• Nodes A and B stake 3,000 and 3,500 $FLOCK respec-

tively, while Validators A, B and C stake 3,000, 6,000 and
3,000 respectively. Node A also receives an additional
1,000 FLOCK from its delegators, which brings the ti
(total stake including delegated stake) to be 4,000 for
Node A.

• For simplicity, we assume γ to be 0 in this example.
• We further assume σ to be 0.4, and δ to be 0.1.
• We consider the scores for Nodes A, B, Validators A, B

and C are 0.501435, 0.498565, 0.472768, 0.280226 and
0.247006 respectively.

First, for this given task on Day 1, total rewards for all
training nodes are:

309157.68× 6500

6500 + 12000
= 108623.7

We can then compute the rewards for Node A and its
delegators. Consider αt=1, rewards for Node A (together with
delegators) are:

0.501435× 4000

(0.501435× 4000) + (0.498565× 3500)
×108623.7 = 58084

Similarly, for Node B, its rewards together with its delega-
tors are:

0.498565 · 3500
(0.501435 · 4000) + (0.498565 · 3500)

× 108623.7 = 50539
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Fig. 5: Overview of the workflow of a FLock FL task, adopted from our previous work [14]. During each round, FL clients are
randomly selected to act as proposers or voters. Their staked amount can be either rewarded or slashed based on the outcome
of the majority voting results. Malicious clients will ultimately be removed from the FL system.

Given σ=0.4, the actual reward for Node A alone is:

58,084×
(
0.4 + 0.6× 3000

4000

)
= 49371

As Node B does not have any delegator, so it will retain 100%
of its rewards (i.e. 50,539).

As we assume δ is 0.1, Reward A is 10% of the daily
rewards for training nodes, while 90% of the rewards (i.e.
Reward B) will be locked until the end of task. Thus, Reward
A and Reward B for Node A on Day 1 are 4,937.1 and
44,433.9 respectively, whereas those for Node B are 5,053.9
and 45,485.1 respectively.

As for validators, for the same task on Day 1, total rewards
for all validators are:

309157.68× 12000

6500 + 12000
= 200534.0

Then, if we assume Validator A has a score of 0.472768,
the the reward for validator A only is:

200534.0× 0.369×
(
0.4 + 0.6× 3000

3000+0

)
= 73997

Similarly, on Day 1, rewards for Valdiator B (score =
0.280226, stake = 6,000) and Validator C (score = 0.247006,
stake = 3,000) are 87,834 and 38,703 respectively.

As for Delegator A who delegates 1,000 to Node A, its
rewards on Day 1 are calculated as such:

58084×
(
0.6× 1000

3000+1000

)
= 8712.6

The reward distribution among the participants in task 1
during the 5 days is shown in Table II.

VI. FLOCK CONSENSUS IN FL ALLIANCE

Figure 5 depicts the workflow of a FL Alliance task in
FLock. As shown in our work in leveraging blockchain to
defend against poisoning attacks in FL Alliance [14], FLock
adopts a distributed voting and a reward-and-slash mechanism
to construct secure FL Alliance systems.

A. Task Creators

Similar to task creation in AI Arena, an FL Alliance task
creator must satisfy predefined criteria. Only FL Alliance tasks
verified by the FLock DAO will be eligible for rewards from
the daily emissions. Otherwise, the FL Alliance task creator
must self-fund the reward pool using their own $FLOCK.

B. Random Role Selection

Consider a FL Alliance task involving P participants, de-
noted as P = 1, . . . , P . To participate in the training process,
each participant needs to stake a specified quantity of coins.
Upon formally joining the training task, each participant’s
local dataset Dp is randomly partitioned into a training set
Dtrain

p and a test set Dtest
p , which will not be shared with

other participants at any time. At the beginning of each
round t in the FL Alliance task, participants are randomly
assigned roles as either a proposer (PT ) or a voter (PV )
through an on-chain random function. Subsequently, a model
initialised or pre-trained model downloaded from AI Arena
by one of the proposers is chosen at random temporarily to
serve as the pioneering global model. The selected model’s
weights or gradients are then distributed to all participants,
ensuring a unified starting point for local models. Proposers
are responsible for training their local models using their
own data and subsequently sharing the updated model weights

10
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Algorithm 1 FLock Federated Training.

T : Total number of global communication rounds
E: Total number of local model update epochs
θg: Global model
Dtrain

p : local training dataset
Dtest

p : local test dataset
1: procedure INIT
2: Download pre-trained model from AI Arena or initialise global model θtg
3: Broadcast θtg to all participants
4: end procedure
5: procedure UPDATE(θtg)
6: Initialise local model θtp
7: Update model parameters θtp ← θtg
8: θt+1

p ← θtp − η∇L(θtp; b) ▷ Local model update
9: return θt+1

p

10: end procedure
11: procedure EVALUATE(θt + 1P )
12: θt+1

g ←
∑P

p=1
np

N θt+1
p ▷ Model updates aggregation

13: Res
θt+1
g←−−− Dtest

p ▷ Evaluate aggregated model
14: return Res
15: end procedure
16: procedure MAIN
17: Random select initialisation leader → plead
18: → plead Do procedure Init
19: for t = 1 to T do
20: Random assign roles for all participants
21: Proposer does procedure Update
22: Voter does procedure Evaluate
23: votetp

calculate←−−−− Restp
24: aggVotet =

∑Pv

p=1 vote
t
p ▷ Votes aggregation

25: θt+1
g ← GlobalModelSelection(aggVotet)

26: Broadcast θt+1
g

27: end for
28: end procedure

or gradients with all participants. Voters, on the other hand,
aggregate these updates from proposers. They then proceed
to validate the aggregated model updates, resulting in the
generation of a validation score.

C. FL Alliance Training

At the start of round t, proposers initially download the
global model, denoted as θt−1, which was finalised in the
previous round (t−1). Using the local training dataset Dtrain

p ,
proposers then proceed to update the model θt−1 through E
epochs of local training. Then the updated model θt of the
current round t will be uploaded to the voters for evaluation.

D. FL Alliance Aggregation

Upon the completion of task training during round t, the
voter gathers the local models {θtp}

PT
p=1 from proposers. These

models are then aggregated into the latest global model using
a weighted averaging approach, as described below:

θ̂t =

PT∑
p=1

βp · θtp

Here, the weight βp is defined as np

N , with np = |Dtrain
p |

indicates the number of local training data samples for each
proposer p, and N =

∑PT

p=1 np is the total number of training
data samples across all proposers PT .

E. FL Alliance Validation and Voting

• After the model aggregation process is finalised, the voter
proceeds to evaluate the aggregated model θ̂t, utilising
their own local testing datasets Dtest

p . This evaluation
phase involves the computation of a local validation

11
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Algorithm 2 Reward-and-slash design for FL clients.

P: Set of participants at round t
rewardPool: Total reward pool
Balk: Stake amount of participant k
sp: Slashed rate
participantsDistributionRate: Ratio of participants in one round
TotalRounds: Total numbers of communication round
BalThresholdp: minimum stake of participants

1: poolp ← initialRewardPoolSize
2: for t = 0; t < TotalRounds do
3: Candidates← {}
4: for k ∈ P do
5: if Balk ≥ BalThresholdp then
6: Candidates← Candidates ∪ {k}
7: end if
8: end for
9: Pt

p,Pt
v ← Randomly select proposers and voters from Candidates based on participantsDistributionRate

10: aggVotet ← Aggregated voting results from the voters Pt
v at round t

11: roundRewardAmount← poolp
TotalRounds−t

12: roundTotalStakedTokensForGoodParticipants← 0
13: if aggVotet ≥ 0 then ▷ Compute the participants that should be rewarded in this round
14: for k ∈ Pt

p do
15: roundTotalStakedTokensForGoodParticipants + = Balk
16: end for
17: end if
18: for k ∈ Pt

v do
19: if votetk · aggVote

t ≥ 0 then
20: roundTotalStakedTokensForGoodParticipants + = Balk
21: end if
22: end for
23: if aggVotet ≥ 0 then ▷ Reward and Slash Proposers
24: for k ∈ Pt

p do
25: Balk ← Balk + roundRewardAmount · Balk

roundTotalStakedTokensForGoodParticipants

26: poolp ← poolp − roundRewardAmount · Balk
roundTotalStakedTokensForGoodParticipants

27: end for
28: else
29: for k ∈ Pt

p do
30: Balk ← Balk − Balk · sp
31: poolp ← poolp + Balk · sp
32: end for
33: end if
34: for k ∈ Pt

v do ▷ Reward and Slash Voters
35: if votetk · aggVote

t ≥ 0 then
36: Balk ← Balk + roundRewardAmount · Balk

roundTotalStakedTokensForGoodParticipants

37: poolp ← poolp − roundRewardAmount · Balk
roundTotalStakedTokensForGoodParticipants

38: else
39: Balk ← Balk − Balk · sp
40: poolp ← poolp + Balk · sp
41: end if
42: end for
43: t← t+ 1
44: end for
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(d) η = 0.4.

Fig. 6: Example: FL system with reward and slash mechanism under different values of the ratio of malicious clients (η), taken
from [14]. The average balance of honest clients increases, while the average balance of malicious clients decreases over time.

score, stp, which functions as a criterion for assessing the
model’s performance. These individual validation scores
are then submitted to a smart contract for aggregation.
Following the aggregation, the aggregated score is com-
pared with the previous round’s score, st−1

p , to assess
progress or decline in model performance. The smart
contract then determines the next steps for the aggregated
model based on these scores: advancement to the next
phase for satisfactory performance improvement, or a
return to the preceding validated model to begin a new
cycle of training, aggregation and evaluation, if progress
is deemed insufficient.

votetp =

{
1, stp ≥ (1− ϵ) · st−1

p

−1, stp < (1− ϵ) · st−1
p

Here, ϵ is a hyperparameter within the range (0, 1), des-
ignated to tolerate the permissible margin of performance
decline across successive rounds.

• After receiving all reported voting results
{votet1, ..., votetPV

} from the validators, the aggregator
will calculate the aggregated voting result via the
following formula:

aggVotet =
Pv∑
p=1

votetp

For each round t, the finalised aggregated global model
update is determined by the aggregated voting result:

θt =

{
θ̂t, aggVotet ≥ 0

θt−1, aggVotet < 0

F. FL Alliance Rewards for Participants

The aggregated voting result aggVotet will also determine
the rewards distribution for participants in a FL Alliance task.

• Rewards and Penalties for Proposers/Training Nodes:
As shown in Algorithm 2, in any given round t, should
aggVotet be non-negative, all training nodes selected for
that round will receive rewards. Conversely, a negative
aggregate vote will result in penalties for these nodes.

• Rewards and Penalties for Voters/Validators: As
shown in Algorithm 2, for round t, if aggVotet ≥ 0, then
validators who issued a positive vote will be rewarded,
while others will face penalties. Conversely, should the
aggregate vote be negative, validators who aligned with
this outcome are rewarded, whereas those who did not
will be penalised.

G. Example

As illustrated in Figure 6(d), taken from our previous
work [14], proper configuration of the slashing and reward
mechanisms enables the expulsion of malicious FL partici-
pants from the system, while incentivising honest behaviour.

H. FL Alliance Improvement: ZKPs-based FL

FLock also adopts advanced techniques such as Zero-
knowledge proof (ZKP) [16], [17] to construct secure decen-
tralised AI training systems.

ZKPs for FL Alliance Aggregation: As demonstrated in
our prior study, FLock incorporates ZKP to address the
issues arising from the centralisation of the FL Alliance
aggregator/server, as detailed in our earlier research [18]. Our
FL system, which can be underpinned by both blockchain
technology and ZKPs and function in the following manner:

• Setup Phase: Each participant, comprising N clients
and an aggregator, generates their unique private/public
key pairs. These pairs are directly associated with their
respective blockchain addresses.

• Client Selection Phase: At the beginning of each epoch,
a subset of n clients is selected from the total N by using
Verifiable Random Functions.

• Local Computation Phase: The selected n clients start
local model training to derive their individual model
updates w1, w2, . . . , wn. Utilising the Pedersen commit-
ment, each client encrypts their update as Enc(wi) =
gwi ·hsi , where g and h are predefined public parameters
and si is a randomly generated number by the client.
Following encryption, clients authenticate these updates
using their private keys to produce a signature sigi
and subsequently transmit the compilation of their local
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model update, the generated random number, the en-
crypted update, and the signature (wi, si, Enc(wi), sigi)
to the aggregator.

• Aggregation and ZKP Generation Phase: The aggre-
gator aggregates the incoming local updates to form a
unified global model update w =

∑n
i=1 wi. It also calcu-

lates the collective encrypted value of this global update
as Enc(w) =

∏n
i=1 Enc(wi) and signs this encrypted

value to produce a signature sig. Utilising zkSnarks, the
aggregator issues a proof π to validate the accuracy and
authenticity of the aggregation process, based on the
provided statement and witness, ensuring the integrity
of both the individual updates and the aggregate model.
Specifically, the aggregator then leverages zkSnark to
issue a proof π for the following statement and witness:

statement = (Enc(w1), sig1, Enc(w2), sig2,

..., Enc(wn), sign, Enc(w))

witness = (w1, s1, w2, s2, ..., wn, sn, w)

where the corresponding circuit C(statement, witness)
outputs 0 if and only if:

∀1 ≤ i ≤ n,Enc(wi) = gwi · hsi

w =
∑n

i=1 wi

sigi is signed by the client i

• Global Model and Proof Dissemination Phase: The
aggregator distributes the global model update w and its
encryption Enc(w) back to the n clients. Concurrently, it
broadcasts the validity proof π along with the encrypted
global model update to the block proposers.

• Blockchain Verification Phase: Upon receiving the
proof π and the encrypted global model update from the
aggregator, block proposers verify π. If deemed valid,
the hash of H(Enc(w)) is inscribed onto the blockchain,
cementing the update’s correctness.

• Blockchain Consultation Phase: As a new epoch ini-
tiates, the next cohort of n selected clients peruses the
blockchain to verify the inclusion of H(Enc(w)). Upon
successful validation, they proceed with their local train-
ing, guided by the insights gleaned from the aggregated
global model update w.

VII. FLOCK GOVERNANCE

FLock token holders are entitled to engage in the system’s
democratised governance through a DAO. To participate in
governance, token holders typically need to lock their tokens
in a smart contract. Each token can represent a vote, aligning
the distribution of power proportional to users’ stake.

Users can propose, debate, and vote on various aspects of
development and management, from technical updates and
protocol modifications to treasury management and commu-
nity initiatives.

• Proposing: The FLock community actively shapes the
protocol’s future through a proposal system for all token

holders. Proposals can range from addressing technical
issues like bug fixes and algorithm optimisation to driving
wider community impact, such as allocating treasury
funds for research or launching educational programs.

• Debating: Proposed ideas are then open for discussion
and critique within the FLock community. Token holders
can engage in forums, discussions, and possibly even
direct communication with developers to analyze the
merits and potential consequences of each proposal. This
debate fosters transparency and ensures that decisions are
well-informed and considered from multiple perspectives.

• Voting: Once a proposal has been sufficiently debated,
token holders cast their votes to decide its fate. The voting
system likely incorporates mechanisms like weighted
voting (where larger holdings carry more weight) or
quadratic voting (which incentivises thoughtful contri-
butions and discourages manipulation) to ensure fair
representation.

The statement emphasises that FLock’s governance model
allows for continuous adaptation as the platform and the
decentralised AI landscape evolve:

• Policy Adaptation: As new challenges and opportunities
arise, token holders can use the voting system to modify
existing policies or create entirely new ones. This ensures
that FLock remains relevant and responsive to the chang-
ing needs of its community and the broader AI ecosystem.

• Feature Implementation: Proposals for implementing
new features can be put forward and voted on, allowing
the FLock platform to grow and evolve based on user
demand and feedback. This fosters innovation and keeps
FLock at the forefront of decentralised AI development.

• Responding to Challenges: The ability to quickly adapt
policies and implement changes allows FLock to ef-
fectively respond to unforeseen challenges like security
vulnerabilities, regulatory shifts, or market fluctuations.

As FLock and decentralised AI landscape mature, token
holders can adapt policies, implement new features, and re-
spond to emerging challenges.

VIII. FLOCK APPLICATIONS

The FLock system can be used to construct centralised AI,
which have been proven to applied in the following cases.

A. Decentralised AI for LLMs

• Pre-training of LLMs: FLock facilitates the pre-training
of LLMs by leveraging a decentralised network whereby
members can contribute computational resources and
diverse data sets. This unlocks proprietary data that would
otherwise remain inaccessible or unused in traditional,
centralised open-source development. Diverse datasets
ensure LLM versatility and ensures a broader repre-
sentation of linguistic and cultural nuances, as well as
community-defined values for LLMs.

• Fine-tuning of LLMs: Fine-tuning involves adapting a
pre-trained model to perform specific tasks or improve
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its accuracy on particular types of data. FLock supports
fine-tuning in several ways:
– Fine-tuning for Financial Transactions: LLMs can

be fine-tuned to act as intelligent agents for cryp-
tocurrency transactions. Capabilities include transfers,
swaps, and bridging between different cryptocurren-
cies. FLock’s collaborations with platforms such as
Morpheus Network and 0xscope can facilitate hosting
these AI models, ensuring that they are accessible and
operational for the community. This enables secure and
efficient AI-driven financial transactions.

– Fine-tuning for AI Companions: AI models can be
fine-tuned to interact with users in more personalised
and engaging ways, similar to those on platforms like
Character.ai. FLock can host these sophisticated AI
companions, enhancing user experience through more
natural and context-aware interactions.

B. Decentralised AI for Stable Diffusion Models

The FLock system can be used to fine-tune Stable Diffusion
text-to-image models. One critical component of this process
involves Low-Rank Adaptation (LoRA) [19], which modifies
certain parameters within the model’s architecture to make it
more adaptable to specific tasks without extensive retraining.

• Fine-tuning LoRA: LoRA is designed to adapt pre-
trained models by introducing trainable low-rank matrices
into the architecture. This technique allows for efficient
adaptation with minimal additional computational cost
and a smaller number of trainable parameters. In the
context of FLock and Stable Diffusion Models, applying
LoRA is particularly advantageous for several reasons:
– Community-Driven Enhancements: By decentralising

the fine-tuning process, FLock broadens participation
in contributing specific knowledge and preferences.
Artists, designers, and other creatives can input unique
styles or features they wish to see enhanced, improving
output quality and ensuring that it serves a wider array
of cultural contexts and artistic expressions.

– Scalability and Accessibility: Fine-tuning with LoRA
can be scaled across multiple nodes, facilitating more
widespread and continuously iterative improvements.

– Use Case Expansion: By fine-tuning Stable Diffusion
Models with LoRA, FLock can cater to specific indus-
tries or niches. For example, the model could be fine-
tuned to generate medical illustrations for educational
purposes, architectural visualisations for real estate, or
unique art styles for digital media.

C. Decentralised AI for Linear Regression Models

Linear regression models [20] are fundamental tools in
statistical analysis and predictive modeling, widely used for
their simplicity and effectiveness in understanding relation-
ships between variables. FLock applies these principles in a
decentralised setting to address specific healthcare challenges,
such as diabetes management.

Diabetes management presents a critical area where linear
regression can be effectively utilised to predict patient out-
comes based on various inputs such as blood sugar levels, diet,
exercise, and medication adherence. FL Alliance facilitates the
development of these predictive models with decentralised data
sources in a way that respects patient data protection.

• Data Protection and Security: FLock allows multiple
healthcare providers to collaborate in the model training
process without actually sharing the data. This method
is crucial for complying with stringent health data pro-
tection regulations such as HIPAA in the U.S. Each
participant (e.g., hospitals, and clinics) retains control
over their data, which is used to compute model updates
locally. These updates are then aggregated to improve a
shared model without exposing individual patient data.

• Enhanced Model Accuracy and Reliability: By integrating
data from a diverse range of demographics and geograph-
ical locations, FLock can help develop more accurate and
generalised linear regression models for diabetes manage-
ment. This diversity is especially important in healthcare,
where patient populations can vary significantly, affecting
the reliability of predictive models.

• Collaborative Innovation: Different healthcare entities
contribute to a common goal, accelerating innovation and
leading to the discovery of novel insights into diabetes
management and treatment strategies.

IX. CONCLUSION

FLock provides solutions to build decentralised AI through
AI Arena, FL Alliance, and AI Marketplace. FLock dismantles
obstacles that hinder participation in AI systems, enabling de-
velopers to contribute models, data, or computational resources
in a flexible, modular fashion. FLock fosters the creation of a
diverse array of models, meticulously crafted by and expressly
for the communities they serve in AI models.
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